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Abstract

In this paper we describe TinyLime, a novel middleware for wireless sensor networks
that departs from the traditional setting where sensor data is collected by a cen-
tral monitoring station, and enables instead multiple mobile monitoring stations to
access the sensors in their proximity and share the collected data through wireless
links. This intrinsically context-aware setting is demanded by applications where
the sensors are sparse and possibly isolated, and where on-site, location-dependent
data collection is required. An extension of the Lime middleware for mobile ad hoc
networks, TinyLime makes sensor data available through a tuple space interface,
providing the illusion of shared memory between applications and sensors. Data
aggregation capabilities and a power-savvy architecture complete the middleware
features. The paper presents the model and application programming interface of
TinyLime, together with its implementation for the Crossbow MICA2 sensor plat-
form.

Key words: wireless sensor networks, mobile ad hoc networks, middleware, tuple
space

1 Introduction

Wireless sensor networks have emerged as a novel and rapidly evolving field,
with staggering enhancements in performance, miniaturization, and capabil-
ities. However, we observe that the features provided by the computing and
communication hardware still await to be matched by an appropriate software
layer enabling programmers to easily and efficiently seize the new opportuni-
ties.
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At the same time, we observe that much of the work in the area assumes
statically deployed sensors organized in a network from which data is col-
lected and analyzed at a central location. For many applications, e.g., habitat
monitoring [Polastre et al., 2004], this is a natural setting. However, in many
others this seems overly constraining. First of all, it may be impractical or
even impossible to choose the location of the collection point, for example
in disaster recovery or military settings. Moreover, in the centralized scenario
sensors contribute to the computation independently of their location. In other
words, there is no notion of proximity supporting, for example, reading only
the average temperature sensed around a technician while he walks through a
plant.

In this paper, we outline a new operational setting for sensor network appli-
cations, and describe a new middleware to support development in this arena.
Our reference operational setting replaces centralized data collection with a set
of mobile monitors able to receive sensed data only from the sensors they are
directly connected to. This way, sensors effectively provide each mobile mon-
itor with context-sensitive data. The monitors are interconnected through ad
hoc, wireless links of which they can share locally collected data.

To support this operational setting, we extend and adapt a model and middle-
ware called Lime [Picco et al., 1999, Murphy et al., 2001], originally designed
for mobile ad hoc networks (MANETs). Changes to the model are required
to match the operational setting and extensions of the middleware are needed
to cope with the requirements related to power consumption and the sheer
need of installing the middleware components on devices with very limited
computational resources. Key features include operations with highly tunable
scope and options for treating data in aggregated, as well as raw form. The
result of this effort, called TinyLime, has been implemented entirely of top of
the original Lime and deployed using Crossbow MICA2 motes [xbo, 2005] as
the target platform.

The paper is organized as follows. Section 2 contains background informa-
tion about Lime and the mote sensors. Section 3 illustrates the operational
setting we propose and target. Section 4 presents the TinyLime model. Sec-
tion 5 describes the features available to clients by introducing the application
programming interface through sample code. Section 6 describes the internal
architecture of the middleware. Additional implementation details and eval-
uation are provided in Section 7. Section 8 places our work in the context of
related efforts. Finally, Section 9 ends the paper with brief concluding remarks.

2



2 Background — Linda and Lime

TinyLime is a data-sharing middleware based on Lime, which in turn adapts
and extends towards mobility the tuple space model made popular by Linda.

Linda and Tuple Spaces. Linda [Gelernter, 1985] is a shared memory
model where the data is represented by elementary data structures called tu-
ples and the memory is a multiset of tuples called a tuple space. Each tuple
is a sequence of typed fields, such as 〈“foo”, 9, 27.5〉 and coordination among
processes occurs through the writing and reading of tuples. Conceptually all
processes have a handle to the tuple space and can add tuples by perform-
ing an out(t) operation and remove tuples by executing in(p) which specifies
a pattern, p, for the desired data. The pattern itself is a tuple whose fields
contain either actuals or formals. Actuals are values; the fields of the previ-
ous tuple are all actuals, while the last two fields of 〈“foo”, ?integer, ?float〉
are formals. Formals act like “wild cards”, and are matched against actuals
when selecting a tuple from the tuple space. For instance, the template above
matches the tuple defined earlier. If multiple tuples match a template, the one
returned by in is selected non-deterministically. Tuples can also be read from
the tuple space using the non-destructive rd(p) operation.

Both in and rd are blocking, i.e., if no matching tuple is available in the tuple
space the process performing the operation is suspended until a matching tuple
appears. A typical extension to this synchronous model is the provision of a
pair of asynchronous primitives inp and rdp, which return null if no matching
tuple exists in the tuple space. Some variants of Linda (e.g., [Rowstron, 1998])
also provide the bulk operations ing and rdg, which can be used to retrieve
all matching tuples at once.

Processes interact by inserting tuples into the tuple space with the out op-
eration and issuing rd and in operations to read and remove data from the
space.

Lime: Linda in a Mobile Environment. Communication in Linda is de-
coupled in time and space, i.e., senders and receivers do not need to be avail-
able at the same time, and mutual knowledge of their identity or location is
not necessary for data exchange. This decoupling makes the model ideal for
the mobile ad hoc environment where the parties involved in communication
change dynamically due to their movement through space. At the same time,
however, the global nature of the tuple space cannot be maintained in such an
environment, i.e., there is no single location to place the tuple space so that
all mobile components can access it at all times.
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Fig. 1. In Lime connected mobile hosts transiently share the tuple spaces of the
agents executing on them.

To support mobility, the Lime [Picco et al., 1999, Murphy et al., 2001] model
breaks up the Linda tuple space into multiple tuple spaces each permanently
attached to a mobile component, and defines rules for the sharing of their
content when components are able to communicate. In a sense, the static global
tuple space of Linda is reshaped by Lime into one that is dynamically changing
according to connectivity. As shown in Figure 1, the Lime model encompasses
mobile software agents and physical mobile hosts. Agents are permanently
assigned an ITS, which is brought along during migration, and reside on the
mobile hosts. Co-located agents are considered connected. The union of all the
tuple spaces, based on connectivity, yields a dynamically changing federated
tuple space. Hereafter, for the purpose of this work we always consider the
agents as stationary.

Access to the federated tuple space remains very similar to Linda, with each
agent issuing Linda operations on its own ITS. The semantics of the opera-
tions, however, is as if they were executed over a single tuple space containing
the tuples of all connected components.

Besides transient sharing, Lime adds two new notions to Linda: tuple locations
and reactions. Although tuples are accessible to all connected agents, they only
exist at a single point in the system, i.e., with one of the agents. When a tuple
is output by an agent it remains in the corresponding ITS, and the tuple
location reflects this. Lime also allows for tuples to be shipped to another
agent by extending the out operation to include a destination. The notion
of location is also used to restrict the scope of the rd and in operations,
effectively issuing the operation only over the portion of the federated tuple
space owned by a given agent or residing on a given host.

Reactions allow an agent to register a code fragment—a listener—to be exe-
cuted whenever a tuple matching a particular pattern is found anywhere in the
federated tuple space. This is particularly useful in the highly dynamic mo-
bile environment where the set of connected components changes frequently.
Like queries, reactions can also be restricted in scope to a particular host or
agent. Nevertheless, the ability to monitor changes across the whole system
by installing reactions on the federated tuple space has been shown to be one
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of the most useful features of Lime.

Additional information, including API documentation and source code, is
available at [lim, 2000].

3 Operational Setting

Most middleware designed specifically for sensor networks operate in a setting
where the sensors are fixed in the environment and report their values to a
centralized point. As we discuss in Section 8, much work has gone into making
these operations power efficient. However, this centralized approach may not
be the appropriate model for all applications. Consider an application that
requires information from sensors in close proximity to the user. In this case,
both the location of the user and the location of the sensors must be known,
the data must be requested by the sensors determined as proximate, then the
data must be shipped to the central collection point. This has a number of
drawbacks. First, it may not be reasonable to expect to know the location of all
sensors. Second, the collection of information puts a communication burden on
the sensors between the proximate sensors and the collection point to forward
the data. Third, it requires that all sensors be transitively connected to the
base station—something that may not be feasible in all environments due to
physical barriers or economic restrictions limiting the number of sensors in a
given area.

Considering these issues, we propose an alternative, novel operational scenario;
one that naturally provides contextual information, does not require multi-
hop communication among sensors, and places reasonable computation and
communication demands on the sensors. The scenario, depicted in Figure 2,
assumes that sensors are distributed sparsely throughout a region, and need
not be able to communicate with one another. The monitoring application
is deployed on a set of mobile hosts, interconnected through ad hoc wireless
links—e.g., 802.11 in our experiments. Some hosts are only clients, without
direct access to sensors, such as the PDA in the figure. The others are equipped
with a sensor base station, which however enables access only to sensors within
one hop, therefore naturally providing a contextual view of the sensor sub-
system.

This scenario is not just an academic exercise, rather it is relevant in several
real-world situations. Imagine, for example, a disaster recovery scenario with
mobile managers and workers, where sensors have been deployed randomly
(e.g., thrown from the air). The computer of each worker is also a base station
that enables them to perform their tasks by accessing the proximate sensor in-
formation. Instead, managers are connected only as clients, and gather global-
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Fig. 2. Operational scenario showing one hop communication between base stations
(laptops) and sensors and multi-hop communication among base stations and clients
(PDAs). Client agents can also be co-located with the base stations (e.g., running
on the laptops).

or worker-specific data to direct the recovery operations, without the need
either to have a single data collection point or to know exactly where sensors
(and even workers) are placed. In a sense, the scenario we propose merges
the flexibility of MANETs with the new capabilities of sensor networks, by
keeping the complexity of routing and disseminating the sensed information
on the former, and exploiting the latter as much as possible only for sensing
environmental properties.

4 TinyLime: An Overview

TinyLime was conceived to support the development of applications in the
operational setting just described. It extends Lime by providing features and
middleware components specialized for sensor networks. The implementation
has been built for the Crossbow Mote sensor platform. In this section we
overview this platform, introduce the model underlying TinyLime, and in
general provide an overview of its main concepts and capabilities.

Crossbow Mote Sensor Platform. We selected the Crossbow MICA2
mote sensor platform [xbo, 2005], as our implementation target. It is worth
noting, however, that the TinyLime model is equally applicable to any plat-
form. In the Crossbow platform, a sensor board can be plugged onto each
sensor node (mote) to support several environment readings including light,
acceleration, humidity, magnetic field, sound, etc. The MICA2 motes in our
testbed run on two AA batteries, whose lifetime is dependent on the use of the
communication and computation resources. The communication range varies
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greatly based on the environmental conditions, with an average indoor range
observed during our experiments of 6-7 m. The motes run an open source oper-
ating system called TinyOS [Hill et al., 2000] and have 5Mbit of flash memory,
with 1Mbit (512KB) reserved for program memory and 4Mbit (512KB) avail-
able for user data. A laptop is converted to a base station able to communicate
with the motes by connecting a special base station circuit board to the serial
port of the laptop.

Programming Model: from Lime to TinyLime. As in Lime, the core
abstraction of TinyLime is that of a transiently shared tuple space, which in
our case stores tuples containing the sensed data. However, TinyLime also
introduces a component in addition to agents and hosts—the motes. In the
physical world, motes are scattered around and communicate with base sta-
tions only when the latter move within range. Dealing with this scenario by
considering a mote just like another host would lead to a complicated model
with an inefficient implementation. Instead, in TinyLime a simpler abstraction
is provided. A mote is not visible through TinyLime unless it is connected to
some base station. When this is the case, the mote is represented in the model
much like any other agent residing on the base station host (and therefore
“connected” to it), with its ITS containing the set of data provided by its
sensors. Looking at Figure 1, it is as if on each host there were an additional
agent for each mote currently in range of that host. Clearly, things are quite
different in practice: the mote is not physically on the base station, and there
is no ITS deployed on the mote. As usual, it is the middleware that takes care
of creating this abstraction to simplify the programmer’s task. The support
for the abstraction is described in the following section.

The rest of the model follows naturally. For instance, operations on the feder-
ated space now span not only connected hosts and agents, but also the motes
within range of some host—similarly for operations restricted to a given host.
Also, the mote identifier can be used much like an agent identifier to restrict
the scope of a query or reaction to a specific mote. To make a concrete ex-
ample, consider the scenario of Figure 2. When an agent on the laptop base
station on the right issues a rd for light data, restricted in scope to its own
host, a light reading from one of the two connected motes will be returned. If,
instead, an agent running on the PDA issues the same rd query but with unre-
stricted scope, a light reading from any of the five sensors connected to the two
base stations will be returned non-deterministically. It should be noted, how-
ever, that although TinyLime agents use the basic Lime operations to access
sensor data, this data is read-only, i.e., only reactions, rd, rdp, and rdg are
available. Indeed, sensors measure and report properties of the environment
that cannot be changed or removed by the clients, but only inspected.

Reactions work as in Lime, modulo the changes above, and are extremely
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useful in this environment. Imagine a situation where a single base station
agent registers a reaction to display temperature values. As the base station
moves across the region, the temperature from each mote that comes into
range will be displayed—with no extra effort for the programmer. TinyLime
reactions also provide additional expressive power by accepting a condition,
e.g., to specify reaction only to temperatures between 20 and 30 degrees. This
helps to limit communication by the motes, enabling data transmission only
if it is useful for the application.

Time Epochs and Data Freshness. Sensors measure environmental prop-
erties and, in many cases, the data they sense is useful only if it is recent
enough. To empower the programmer with the ability to specify constraints
about the obsolescence of the data sensed, all TinyLime operations enabling
data access (i.e., proactive queries such as rd as well as reactions) accept a
freshness parameter. This also enables caching on the base stations, return-
ing matching data stored in the tuple space without communicating with the
sensor nodes—and therefore saving their power—as long as the data is fresh
enough.

However, to specify the freshness of data with respect to time, one needs a
representation of time. Physical time requires complex synchronization algo-
rithms [Sundararaman et al., 2005] that introduce significant communication
overhead. Moreover, only a fraction of sensor network applications require the
degree of precision provided by these algorithms. Instead, we divide time in
intervals called epochs. As described in Section 6, sensing and communication
is governed by the duration of the epoch, which is a system-wide deployment-
time configuration parameter. In particular, data is only recorded at most
once per epoch. Therefore, epochs are a natural way to express constraints
over time. For instance, it is possible to specify that the data returned by a
rd should not be older than 5 epochs. Each mote tracks the number of epochs
is has been alive and associates each reading with this epoch count. This al-
lows temporal comparison of readings from the same mote. Because motes
have no notion of wall clock time, and each is likely to have a different epoch
counter from having booted at different times, all requests for data sent to
motes express time in terms of epochs relatives to now, e.g., 10 to 5 epochs
ago.

Data Aggregation and Sensor Operation Modes. Sensor network ap-
plications often do not simply gather raw data, rather they collect and trans-
form it, e.g., aggregating values to find the average temperature over a time
interval to reduce the impact of spurious readings. Such aggregation can be
applied at two different levels: globally, over the values sensed by multiple
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sensors, or locally, over the values sensed by a single sensor. Both aggregation
modalities are supported by TinyLime.

Aggregation over multiple sensors is easily achieved using the basic TinyLime
operations. For instance, the rdg operation can be used to collect all tuples
containing light sensor readings, which can then be aggregated using appropri-
ate application logic encoded in the agent. Instead, aggregation over the values
of a single sensor requires specific middleware support. In principle it is possi-
ble to adopt the same strategy as above—collect raw values from a sensor using
a rd and aggregate them on the base station—but this is inefficient in terms
of communication bandwidth, and therefore power consumption on the sen-
sor nodes. Whenever possible, aggregation should be pushed close to the data
and therefore on the sensor nodes, trading computation for communication—a
desirable strategy for sensors, where communication is much more expensive
than computation and sampling [Anastasi et al., 2004].

This goal is achieved in TinyLime by making two significant extensions to
what has been presented thus far. First of all, there must be a way to re-
quest access to data by specifying not only that an aggregate value should
be returned, but also which aggregating function should be exploited. This is
achieved essentially by exploiting an appropriate format for the templates and
tuples involved in operations on the tuple space. Second, implementing aggre-
gation on the sensor nodes entails a completely different change of perspective.
Thus far, we assumed that the sensors play a passive role, by acquiring and
communicating data only if and when needed—i.e., when the base station
makes a request with a rd or reaction operation. Instead, aggregation requires
an active behavior from the sensors, which must be able to autonomously
and periodically sample the data over which aggregation is computed. Con-
ceptually, it is as if sensors keep their readings in a private data space and
allow access to it through an aggregating function. Nevertheless, the active
and continuous sampling implied by this form of aggregation is fundamental
for some applications, but may be overkill for others, where instead it is suffi-
cient to activate sampling only when a finer-grained analysis of a phenomenon
is needed—or never at all. Therefore, TinyLime gives the programmer both
options. A sensor can be preprogrammed to take samples at regular intervals
throughout its lifetime. Alternately, it can start in passive mode, and it is up
to the application programmer to explicitly activate sampling for a given num-
ber of epochs, after which the sensor automatically switches itself back into
passive mode, without additional communication. The next section describes
in more detail how this and other aspects of TinyLime are made available
through its application programming interface.
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5 Programming with TinyLime

Before exploring the internal architecture of TinyLime, we illustrate how
TinyLime can be exploited to develop applications accessing sensor data. We
first present the application programming interface (API) of our middleware,
and then show it in action through two simple examples, one for reading a
single sensor value and the other for reacting to aggregated values.

5.1 API

In many respects, the interface to TinyLime is similar to that of Lime, pre-
senting a tuple space interface for retrieving data. Figure 3 shows the main
components of the API, specifically the tuple space class, the tuple and tem-
plate classes, and the interface for specifying aggregation options. The inter-
ested reader can find the full API on the web page [tin, 2000].

The primary mechanism for a client to interact with the sensors is through the
MoteLimeTupleSpace class, which extends LimeTupleSpace from the Lime
API. However, in TinyLime, client applications do not create sensor data,
therefore creation of tuples by clients is not allowed. Similarly the operations
that remove tuples are prohibited since they would allow a client to remove
sensor data, deemed part of the environment, and therefore not able to be
removed. Instead, only the read and reaction operations are allowed on current
sensor data. The other operations throw an exception for sensor data.

The main parameter of the read operations and reactions is the tuple template.
In Lime, and in general tuple space models, the format of this template is left
to the application. However, in TinyLime this format is predefined to access
the sensor data available from the motes, although it can be easily adapted
to suit different sensor platforms. As shown in Figure 4, TinyLime uses four
specific tuple templates to access the different types of data.

A tuple (or template) for a regular sensor reading consists of four fields. The
first field indicates the type of sensor to be queried. In our mote-specific imple-
mentation, valid values are ACCELX, ACCELY, HUMIDITY, LIGHT, MAGNOMETER,
MICROPHONE, RADIOSTRENGTH, TEMPERATURE, and VOLTAGE. The second field
contains the actual sensor reading 1 . The third field is the epoch number at
the mote when the reading was taken. It indicates approximately how long
the mote has been alive and allows temporal comparison of readings from the
same mote. The last field represents information provided by the base station

1 In TinyOS all sensor readings are represented as integers. Conversion functions
exist to convert them to more meaningful measurements.
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public class MoteLimeTupleSpace extends LimeTupleSpace {

public MoteLimeTupleSpace();

LimeTuple rd(LimeTemplate template);

LimeTuple[] rdg(LimeTemplate template);

LimeTuple rdp(LimeTemplate template);

RegisteredReaction[] addWeakReaction(Reaction[] reactions);

RegisteredReaction[] getRegisteredReactions();

void removeWeakReaction(RegisteredReaction[] reactions);

// Note the special-purpose IDs: AgentLocation.UNSPECIFIED, MoteID.UNSPECIFIED

int getSensingTimeout(AgentLocation baseID, MoteID mid);

void setSensingTimeout(AgentLocation baseID, MoteID mid, int sensingTimeout) ;

void setBuzzer(AgentLocation baseID, MoteID mid);

void setRadioPower(AgentLocation baseID, MoteID mid);

void setSensingTimeout(AgentLocation baseID, MoteID mid)

void setActive(AgentLocation baseID, MoteID mid,

SensorType[] sensors, int timeout);

}

public class MoteLimeTemplate extends LimeTemplate {

public MoteLimeTemplate(Location cur, AgentLocation dest, MoteID mote,

int freshness, LimeTupleID id, ITuple t);

public MoteLimeTemplate(ITuple t);

public MoteID getMoteid();

public MoteID setMoteid();

public int getFreshness();

public int setFreshness();

}

public class MoteLimeTuple extends LimeTuple {

public MoteLimeTuple(MoteID mid, AgentLocation cur, AgentLocation dest,

LimeTupleID id, ITuple t);

public MoteID getMoteid();

}

public interface IAggregationOptions {

int getFunctionID(); // type of aggregation selected

int getEpochFrom(); // beginning epoch of aggregation range

int getEpochTo(); // ending epoch of aggregation range

}

Fig. 3. TinyLime API.

Operation Data Template

Query
Singleton 〈SensorType: st, Integer: sensorReading, Integer: readingEpoch, BaseStationInfo: bi〉
Aggregate 〈SensorType: st, IAggregationOptions: opt, Integer: aggReading,

Integer: startEpoch, Integer: endEpoch, BaseStationInfo: bi〉
Reaction 〈<singleton or aggregate template fields>, Condition: cond〉

Fig. 4. Tuple templates used by TinyLime clients.

when the sensor value is collected. The details are left to the programmer
who provides a class that decorates BaseStationInfo. In our tests we use
the timestamp of the base station, to approximate when the value was read.
Alternatives include recording any base station information such as location,
remaining battery power, or the signal-to-noise ratio for communication with
the mote that provided the reading.

Following this format, a client can create a MoteLimeTemplate for use in any
of the allowed operations. The constructors optionally allow setting a freshness
value and an operation scope. The latter allows spanning the federated tuple
space, the agents or motes on a host, a single agent, or a single mote.
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Tuples for retrieving aggregate information require the client to specify aggre-
gation parameters. As before, the first field of the tuple identifies the sensor
type to be aggregated. The next field uses the IAggregationOptions interface
to specify the details of the aggregation including the aggregation function and
the interval over which to perform the aggregation. Our implementation pro-
vides AVERAGE, MAXIMUM, MINIMUM, and VARIANCE, but this can be expanded
by the programmer by implementing both the IAggregationOptions inter-
face and the mote-side code to perform the function, described later. The start
and end epochs for aggregation are expressed relative to the current epoch.
In other words, a range of (10, 5) aggregates values from 10 epochs ago until
5 epochs ago. The next integer in the template is the sensor reading. The
following two integers represent the actual epoch interval the aggregation was
executed over. They should be left as formal in the template, but will be
bound to the absolute epoch values from the mote that did the aggregation.
The final field of the aggregate data template is the BaseStationInfo, which
is the same as in other templates.

Reactions add an additional level of complexity to the templates. Specifically
the template, either for a regular data value or an aggregate value, is appended
with a condition field requiring a matching other than the typical value equal-
ity provided by Lime and Linda-based models. In the current implementation,
inequality (e.g., voltage different from 2.1V) and matching over a value range
(e.g., temperature between 20 and 30 degrees) are available 2 .

MoteLimeTupleSpace also provides operations dedicated to controlling sen-
sors. For example, the PDA in Figure 2 can invoke:

setBuzzer(AgentLocation.UNSPECIFIED, MoteID.UNSPECIFIED)

to cause all motes connected to the two base stations to buzz for a short period
of time. setDutyCycle changes the awake period of the motes, setRadioPower
changes the signal strength, and setSensingTimeout changes the maximum
time waited for a mote to answer before declaring it unreachable. As mentioned
earlier, motes must actively record values in order for aggregation to have
meaning. This is controlled using setActive whose parameters specify the
scope of the activation and the duration of the logging in terms of epochs.
Like other tuple space operations, these methods can also be executed over
various scopes.

2 This use of range matching is similar to a new feature in the tuple space en-
gine underlying Lime [Picco et al., 2005] that provides range matching as part of
the template specification. In principle, TinyLime can be changed to exploit this,
however as of this writing the integration has not been completed.
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public class ReaderAgent extends StationaryAgent {

public void run() {

LimeTupleSpace lts = new MoteLimeTupleSpace();

lts.setShared(true);

ITuple tup = new Tuple().addActual(new SensorType(SensorType.LIGHT))

.addFormal(Integer.class) // sensor reading

.addFormal(Integer.class) // epoch

.addFormal(BaseInfo.class); // e.g., timestamp or location

MoteLimeTemplate tmpl = new MoteLimeTemplate(tup);

MoteLimeTuple t = (MoteLimeTuple)lts.rd(tmpl);

System.out.println("Tuple returned: " + t);

}

}

Fig. 5. A sample TinyLime client agent that reads a light sensor value and prints it
to the screen. This is actual code: only exception blocks are omitted for readability.

5.2 Reading a Sensor Value

To make the use of the API concrete, Figure 5 shows the code of a simple
TinyLime client agent that reads and prints a single light reading. The code
shows the creation and sharing of the tuple space, the formation of the sensor
template and the retrieval of the value. The scope of the operation is set
as part of the MoteLimeTemplate itself. By constructing the template with
no specific scope options, in the example, the entire federated tuple space is
queried, meaning any motes in range of any base stations connected to the
client can respond. If the client is co-located with a base station, then another
meaningful scope is the base station host, retrieving a light reading from one
of the motes close to the client. Similarly, if a different base station identifier
or a specific mote identifier are known, the client can differently restrict the
scope, e.g., to explicitly request from a part of the sensed region far from the
client.

Use of the blocking read, rd, dictates that the client will not continue un-
til a light reading is returned. If no motes are connected that can supply
the requested value, the client will block until a sensor comes into range.
Non-blocking semantics can be achieved by using the rdp operation, which,
however requires restricted scope.

To retrieve an aggregated value instead of a single reading, only the tuple tem-
plate needs to change. In the following, we describe the use of the aggregation
template used for a reaction.

5.3 Reacting to Locally Aggregated Sensor Values

Our experience with Lime refpicco00:developing showed that reactions are a
useful programming tool and often constitute a large fraction of application
code. This is even more true in the sensor environment as reactions naturally
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allow many useful access patterns. For example, a client to receive notification
when readings cross a defined threshold, to receive values when a new mote
comes within range, or simply to receive new readings once per epoch as they
are generated by the motes. In this section we begin by describing in detail
an example for a scenario in which a single client is resident on a single, non-
moving base station. The example is simplistic for the sake of presentation:
more sophisticated variants are presented at the end of the section.

Assuming the aforementioned simple scenario, the agent shown in Figure 6
requests the motes to log temperature values for the next 100 epochs. It then
a creates a tuple template to request aggregated temperature values meeting
a condition. The specific aggregation function requested is the average over 10
epochs (range (10, 0), meaning from 10 epochs ago until the current epoch) and
the condition is any aggregate whose value is greater than 200 3 . Additionally,
the aggregate returned must be over at least 5 values. If the aggregate is
requested before the mote has made at least 5 temperature readings, it will
not respond. This template is used to register a reaction. When this reaction
fires, the reactsTo code at the bottom of the figure is executed, printing the
identifier of the mote that returned the aggregate value and the tuple itself.

One of the simplifying elements in this example is the assumption of maximal
scope for all operations, setting active all motes in the federation and reacting
to all aggregates matching the criteria. Because we assume only one base
station is in the system, our example has the effect of retrieving information
from the motes close to the client. If, however, there were more base stations,
the setActive operation could be restricted in scope only to the base station
of the client, or could be opened to all motes connected to any of the base
stations in the current federation. This allows a single client to easily compare
local values against remotely collected values.

In our example, a single agent both requests and collects aggregates. An inter-
esting option is to divide these tasks across two agents. For example, consider
a scenario in which a client/base station pair moves through the field of sen-
sors and selectively sets regions of sensors to log sensor values. Another agent
is later tasked to move through the field to retrieve sensor readings. This co-
ordination among the activator and collector can be arranged externally, or
by exploiting coordination with regular Lime tuple spaces.

3 As mentioned previously, motes return only integer values that must be converted
into meaningful readings. Before this conversion, our experiments yielded room
temperature of around 120.
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public class AggregateReactionAgent extends StationaryAgent implements ReactionListener {

public void run() {

LimeTupleSpace lts = new MotesLimeTupleSpace();

lts.setShared(true);

// set motes to record temperature readings for 100 epochs

lts.setActive(AgentLocation.UNSPECIFIED, MoteID.UNSPECIFIED,

{SensorType.TEMP}, 100);

// wait while readings are actually made so that aggregation makes sense...

// Take the AVERAGE of the last 10 epochs, minimum of 5 epochs in returned aggregate

IAggregationOptions aggOpt = new AggregationOptions(10, 0, AggregationOptions.AVERAGE, 5);

// construct template to react to temperatures averaged over 10 epochs

// whose aggregate value is greater than 200

ITuple t = new Tuple().addActual(SensorType.TEMP)

.addActual(aggOpt)

.addFormal(Integer.class) // aggregated value

.addFormal(Integer.class) // start epoch

.addFormal(Integer.class) // end epoch

.addFormal(BaseInfo.class) // e.g., timestamp or location

.addActual(new Condition(Condition.GREATER_THAN, 200, 0));

MoteLimeTemplate tmpl = new MoteLimeTemplate(t);

// define and register the reaction. The listener is the agent itself

// (see the reactsTo method definition below)

UbiquitousReaction ur = new UbiquitousReaction(tmpl, this, Reaction.ONCEPERTUPLE);

RegisteredReaction rr = lts.addWeakReaction(new UbiquitousReaction[]{ur});

// client continues processing as normal...

}

public void reactsTo(ReactionEvent mre) {

// Print the moteid where the value came from

System.out.println(((MoteTuple)mre.getEventTuple()).getMoteID());

// Print the tuple with the sensor value

System.out.println((mre.getEventTuple()).getTuple());

}

}

Fig. 6. A sample TinyLime client that reacts to temperature readings aggregated
over the last 10 epochs.

5.4 Exploiting Global Aggregation

As a final example we consider aggregation of multiple sensor values. Un-
like the local aggregation above in which the aggregation is performed on the
motes, this aggregation is performed by the client. The readings to aggre-
gate are collected with the rdg operation and the function itself is defined in
client-side code. To change the first example to aggregate the light readings
of all sensors in range of a base station co-located with the agent, only the
construction of the template and the retrieval of the data must be changed as
in the following:

tmpl = new MoteLimeTemplate(thisHost, AgentLocation.UNSPECIFIED, MoteID.UNSPECIFIED,

Freshness.DEFAULT, null, tup);

MoteLimeTuple[] readings = rdg(tmpl);

Above we use the template constructor with parameters for specifying a host
identifier, restricting the scope of the operation to the host where the client
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and the base station reside (thisHost). The agent and mote identifiers are
left unspecified, as are the freshness and tuple identifier. An array of tuples
is returned from the rdg and an aggregation function, e.g., average, can be
applied with the result field inside each returned tuple.

In this example, the client receives readings from the motes nearby and pro-
duces an ambient reading. A simple extension is to perform the same rdg
operation but by specifying a different host, thus receiving the ambient in-
formation for another part of the system. In this way, the ambient values of
different areas of the sensor field can be compared.

6 The TinyLime Middleware Architecture

The TinyLime model and programming interface have been designed as in-
dependent from the specific platform. However, our current implementation
targets the Crossbow MICA2 mote platform, and exploits the functionality
of TinyOS. On standard hosts, TinyLime is implemented as a layer on top
of Lime without requiring any modification to it 4 , reasserting the versatility
of the Lime model and middleware. In this section we describe the internal
architecture of TinyLime, whose main components are shown in Figure 7. It is
worth noting that MoteLimeTupleSpace, MoteLimeTuple, MoteLimeTemplate,
and the condition and aggregation classes are the only classes needed by a
client application. Hereafter, we look at the internals of TinyLime, describing
how it uses Lime and interfaces with the motes. Our presentation begins just
below the programming interface exported to the client and moves progres-
sively toward the components deployed on the motes.

6.1 Interaction between Client and Base Stations

The first component we examine in detail is the MoteLimeTupleSpace, the
primary user class. Although it presents to the client the illusion of a sin-
gle tuple space containing sensor data, internally it exploits two Lime tuple
spaces, one holding data from the sensors and one for communicating requests
from the client. By using two different names, respectively motes and config ,
the content of the two tuple spaces is shared separately by Lime. These same
two tuple spaces are also instantiated at all base stations, therefore sharing
occurs across all clients and base stations, based on connectivity.

4 For full disclosure, only a few methods changed their access level from private to
protected.
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Fig. 7. Main architectural components on the base station and client hosts. Although
shown separate here, the two can be co-located.

The motes tuple space provides access to sensor data. One would expect that,
if the mote is connected, its sensor data should be in the tuple space. Instead,
sensor data is retrieved only on demand, saving motes the communication of
values that no application needs. Therefore, when a client issues a request,
the internal processing of MoteLimeTupleSpace first queries the motes tuple
space for a fresh match. If no such match is found, the operation proceeds by
informing the base stations to query for the required data.

This is accomplished by placing a query tuple into the config tuple space, and
simultaneously registering a reaction on the motes tuple space. These tuple
formats and reactions are defined internally to TinyLime. The query tuple
causes the firing of a reaction on the base station, which in turn retrieves the
data from the sensor and posts it in the motes tuple space, where it causes
the firing of the previously registered reaction, and delivers the data to the
client. The data remains in the motes tuple space, possibly fulfilling subsequent
queries, until it is no longer fresh. The freshness requirement is maintained
by simply removing stale tuples upon expiration of a timer. The config tuple
space is also used for implementing the mote configuration requests described
previously (e.g., setActive) using a similar scheme based on request tuples
and reactions.

In TinyLime, all base stations run an instance of MoteAgent, a Lime agent
that installs the system reactions necessary to the processing we described,
manages the operation requests, and maintains the freshness of the sensor
data. Because some applications may find it useful to access not only the cur-
rent value of a sensor but also its recent values, the MoteAgent also maintains
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historical information in the motes tuple space, albeit with a different tuple
pattern.

6.2 Interaction between Base Station and Motes

To this point we have described how data is retrieved by the client once it
is available in the base station tuple space, however we have not discussed
in detail how it is retrieved from the motes. In TinyLime, this is handled
by a combination of three components: the MoteAgent that receives client
requests from the config tuple space, the TOSMoteAccess component that
asynchronously interacts with MoteAgent to handle request, replies, and all
communication with the motes, and finally the components residing on the
motes themselves. MoteAgent and TOSMoteAccess are highly decoupled, thus
enabling the reuse of the latter in applications other than TinyLime to provide
a straightforward interface to access motes from a base station.

The main job of the TOSMoteAccess component is to translate high-level re-
quests issued by TinyLime into packets understandable by the motes. Four
kinds of requests are accepted: read, reaction, stop operation, and set param-
eter. Both read and reaction serve for both normal and aggregate values, but
with additional parameters for the aggregates specifying the start/stop epochs
and the aggregation function to be used. Requests which last an extended pe-
riod of time, i.e. blocking reads and reactions, accept a listener parameter that
is called when the operation is complete, e.g. data is received or the timeout
expires. Once a request is received by the TOSMoteAccess component, it is
translated into communication with the motes. A reaction request can be
canceled using the stop operation.

Communication. In principle, communication between the base station to
and from motes is simple message passing. However this is not as straight-
forward in sensor networks as in traditional ones. To see why, one must un-
derstand a fundamental property of motes, namely that to conserve energy
they sleep most of the time, waking up on a regular basis to receive and pro-
cess requests. Because motes cannot receive packets while sleeping, the base
station must repeatedly send a single packet as shown in Figure 8. The fre-
quency at which to repeat the packet and the length of time to repeat it are
determined by two parameters: the nominal awake time and the epoch. The
nominal awake time is the amount of time that a mote promises to be awake
during each epoch. The epoch is the basic cycle time of a mote described in
Section 4. To avoid duplicate delivery of packets, each contains a sequence
number that the motes use to filter incoming messages. This design intention-
ally puts the burden of communication on the base station rather than on
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Fig. 8. Communication with motes that sleep for a majority of the time. Retrans-
mission throughout an epoch ensures all motes in range receive each packet.

the motes, forcing the former to repeat a message many times to ensure its
delivery. This is not an issue if, as we assume, the base station has a larger
energy reserve and is more easily rechargeable than the motes.

Operation Processing. With this understanding of mote communication,
we return to the TOSMoteAccess component. Sending a read or parameter set
request to a mote is accomplished in this component by simply sending the
message and waiting for the reply. The processing inside the motes will be
discussed shortly, however it should be noted that because the base station
does not enter a sleep mode, messages sent by the motes are only transmitted
once. If no mote replies within an epoch, the request is re-transmitted. Even
if no mote within range can provide the data, the base station may move
into range of a new mote at any time. Therefore a rd request should be
retransmitted as long as the client is still waiting for a tuple. The probe and
group operations, rdp and rdg, are handled differently because the agent
should receive a null reply if no mote can service the request. Therefore,
after a timeout period the TOSMoteAccess component stops repeating the
request and returns null if no motes responded or, in the case of rdg, the set
of sensor values collected before the timeout.

Next we consider reaction requests. As with regular communication, we chose
a base station driven solution where the TOSMoteAccess component contin-
uously sends reaction requests to the motes. Reaction requests differ from
normal read requests because they contain the condition to be met by data,
allowing the motes to avoid transmitting sensor values that are useless for the
application. Motes are expected to reply once per epoch, even if their sensor
value has not changed, therefore the packet filter mechanism on the motes
is designed to accept packets with the same reaction request identifier once
per epoch. In this solution, the motes remain stateless; when the base sta-
tion moves out of range no processing is required on the motes to cancel the
operation. When a client moves out of range of a base station, the client’s
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reactions must be disabled, but such disconnection is easily detected using
Lime mechanisms inside the MoteAgent and the TOSMoteAccess is informed
to stop requesting sensor values on behalf of the disconnected client.

6.3 On-Mote Components

The only remaining components are those deployed on the motes themselves.
Given the choices made up to this point, the motes component is designed
primarily as a reactive system, responding to incoming messages, managing
its epoch and awake periods, and possibly logging sensor data for later ag-
gregation. Figure 9 shows the architecture of software deployed on motes as
a set of interconnected TinyOS components. The Timers module controls
the epoch and awake periods. The Filtered Communication module receives
all incoming packets, eliminating duplicates based on packet identifiers. The
Aggregation and Logging component takes care of reading and recording
sensor values that have been requested by clients for aggregation purposes.
It also stores the aggregation functions available to the client. The Sensors

Subsystem invokes the appropriate TinyOS components to take sensor read-
ings, including powering sensors on and off before and after use. The Tuning

module handles the setting of mote parameters such as transmission power.
Finally, the Core module links all these components together, triggering events
and setting parameters. The on-mote architecture is designed with an eye to-
ward extensibility. Adding a new sensor requires changes only to the Sensors

Subsystem. Aggregation functions can logging facilities can be modified sep-
arately or together.

To understand the functionality of the sensor component, consider the pro-
cessing of an incoming reaction request. Assuming the incoming packet is not a
duplicate, the Filtered Communication module passes it to the Core, where
the sensor type and condition are extracted from the packet. The Core then
communicates with the Aggregation and Logging component. If a values
has been recently logged, it is returned, otherwise a new reading is taken and
an event is raised on the Core to pass the value up. The value is checked
against the conditions contained in the packet and, if it meets the condition,
a packet containing the sensed value is assembled and passed to the Generic

Communication module to be sent back to the base station.

If the request is for an aggregated value, the request is passed from the core to
the Aggregation and Logging component where the requested aggregation
function (e.g., average) is executed over the requested epoch range. The result
is returned in the same manner as before.
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6.4 An Example — Reading a Single Sensor Value

To summarize how the components fit together in our middleware architecture,
we walk through a simple example where a client reads a sensor light value, as
shown in Figure 10. The client first creates the desired template, and invokes
the rdp function on an instance of MoteLimeTupleSpace. Inside it, the rdp is
converted to a query which is posted to the motes tuple space to see if a fresh
light value already exists. If a value is returned, it is passed back to the client
immediately. Otherwise, a configuration tuple is output to config , indicating
that a sensed light value is needed, and at the same time a reaction is installed
on motes for the required sensor data. The MoteAgent, which is registered to
react to every configuration tuple, receives the agent’s request, passes it along
to the TOSMoteAccess component, which in turn sends a read request to the
motes. When the value is returned, it is placed into the motes tuple space,
triggering the earlier installed reaction to fire, which finally delivers the tuple
with the sensed value back to the client.

7 Implementation Details

TinyLime is available for download at [tin, 2000]. Figure 11 shows the break-
down of source code lines across components.
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Fig. 11. Uncommented lines of source code for all major TinyLime components.

Aggregation and Logging. Although the concepts behind aggregation are
simple, its implementation presents many degrees of freedom. First are the
actual aggregation functions. We have implemented a suite of simple functions
ranging from average to variance, however, the application programmer can
easily expand this by inserting a new component into the Aggregation and

Logging component on the motes. The return value of the function can also
be modified to return any 64 bits. Our current functions use only 16 bits to
return an integer, however, the use of the bits can be tuned by the application,
for example creating a function that returns both the average, maximum, and
minimum values for a specified epoch range. The result simply needs to be
unpacked from the 64 bit integer returned in the third field of the tuple. Such
bit packing and unpacking is not unusual when using limited architecture
systems such as the motes.
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Another set of choices comes in logging, both how much to log and where
to store it. In our current implementation, the log is kept in RAM, using
approximately 4KB (minus space for the runtime stack) for all data. Since
each log entry requires 16 bits for the value and 32 bits for the epoch number,
approximately 300 to 400 readings can be placed into the available space. One
immediate source of expansion is to exploit the 512KB of flash data. Figure 9
shows the location of this management in the architecture, however we have
not yet completed the integration.

The available memory can be divided among the sensor values in any manner
appropriate to the application, for example giving more space to a sensor
whose long term history is more important. We currently divide the space
evenly, using each partition as a circular list for values from a single sensor.

Finally, when requesting an aggregated value, the user specifies both the min-
imum number of readings that can form an aggregate as well as the interval
over which the aggregate should be performed. If the mote does not have suf-
ficient data to aggregate over the full full requested range, the returned epoch
range may be smaller than the request. For example, consider a request for
an average over (100,0). A mote active only for the last 10 epochs cannot
average 100 values, but only 10. The epoch interval returned will correspond
only to the last 10 epochs. Similarly, if a mote recorded values from (100,90)
and (10,0), the result will be the same because an average with a gap has little
meaning. The precise interval returned and the semantics for addressing gaps
are defined by the programmer for each aggregation function.

Evaluation. To get a feel for response times, we ran some experiments with
an epoch time of 8s and an awake time of 2s. These values, especially the
epoch time, heavily influence the numbers below.

Our tests involved only the blocking rd operation. Results would have been
the same for the rdp since in our test a mote is always in range to provide
the requested value. The rdg instead would produce different but rather un-
interesting results, because its performance is not dependent on the motes but
on the parameter of the TOSMoteAccess component that determines how long
to wait to collect all replies. Finally, our reported test results show queries
for a regular sensor value, not an aggregated one. Because the computation
time for aggregation is minimal with respect to communication, the results for
aggregated and regular values are identical and therefore not shown. All tests
were run with the TinyLime client co-located with the base station in order
to eliminate network delays on the non-mote network.

Our first test involved a single mote and two requests. For the first rd re-
quest, response times varied from 0.35s to 5.8s, with an average over 11 runs
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of 3.2s. In a twelfth run, the response time was observed at 12.1s, clearly an
unexpected value since it is longer than the epoch time. This can be explained
by the lossy nature of mote communication. Likely, the request packet was
corrupted and the mote did not receive the request until the second epoch.
Immediately following the first rd request, a second request was issued. In
this case, the previously sensed value was still considered fresh, so no commu-
nication with the motes was required. This time, response times varied from
0.0049s to 0.20s, depending on CPU load. With low CPU usage, the average
was approximately 0.008s.

Our second set of tests involved three motes. In this case, the first rd request
response times varied from 0.29s to 2.3s with an average of 1.2s. This reduc-
tion is expected since the awake time of the motes is likely to be scattered,
increasing the chance that at least one of the motes is awake shortly after the
query is issued. We repeated the test with a second, immediate rd showing the
same results as before. Again, this is expected since no mote communication
is involved as the fresh value is simply observed in the tuple space.

Tests with reactions confirm the previous results, assuming the readings match
the specified conditions. Again, this is expected since reaction are implemented
like queries—they are simply repeated for more than one epoch.

Wakeup scattering. As observed during the tests, the response time for
a request is quite variable and dependent on when it is issued with respect
to when the motes wake up and receive the request packet. With multiple
motes the average response time was shorter, albeit still quite variable. This is
because the awake times of the motes are not coordinated in any fashion; motes
wake up at random times in the epoch period and these times are not likely
to be evenly distributed. This creates two problems. First, if a base station
begins requesting data when all motes are sleeping, it may experience a long
delay before some mote wakes up and replies. Second, if multiple motes receive
the request and try to reply, despite the carrier sense and collision avoidance,
multiple transmissions may saturate the channels and affect performance.

To avoid these situations, we have proposed a preliminary wakeup scattering
algorithm that more uniformly distributes the points at which the motes wake
up during the epoch, resulting in a wakeup distribution similar to the right
side of the figure. An overview is available in [Curino et al., 2005].

Spreading Out Sensor Readings. As noted previously, when a mote is
requested to start logging, readings are not taken every epoch, but instead at
a sampling period specified at compile time. Consider a scenario with three
motes close to one another, recording essentially the same data. Assuming they
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are all configured to log light values every three epochs, they may all log values
in the first, fourth, seventh, etc. epoch from the moment the logging request
arrived. However, it would be more useful to the application if the values with
recorded spread out over time, for example with the first mote logging in the
first, fourth, seventh, etc.; the second mote in the second, fifth, and eighth, and
the third mote in the remaining third, sixth, and ninth epochs. This spreading
can be achieved by exploiting the results of the wakeup scattering described
earlier. Specifically, the earlier a mote wakes up in the epoch, the earlier in
the sampling period the value is logged. In our example, this would imply that
the first mote woke up earlier in the epoch than the second and the third even
later. Because their wakeup times are evenly distributed, the sampling epochs
are also evenly distributed.

8 Related Work

The idea of providing middleware for sensor networks has been growing in
popularity, providing application programmers with a variety of useful ab-
stractions easing the development process. EnviroTrack [Abdelzaher et al.,
2004], a middleware for environmental tracking applications, supports event-
driven programming by identifying an event at a specific location in the sensed
region, collecting the data from proximate sensors, and reporting the readings
and event to the user. TinyLime supports a similar notion through reactions,
although it does not perform the in-network aggregation across multiple sen-
sors.

An alternative model is data-oriented and thus closer to TinyLime. In Di-
rected Diffusion [Intanagonwiwat et al., 2000], applications specify “interest
queries” for the necessary data attributes, and the nodes collaborate to set up
routes for this information to follow back to the application. It is explicitly
multi-hop in nature, unlike TinyLime that focuses on local, contextual inter-
actions with sensors. Other systems provide database interaction with sensors.
TinyDB [Madden et al., 2003] provides an SQL-like interface with optimiza-
tion for placement of parts of the query (e.g., joins, selects) to minimize power
consumption. Cougar [Bonnet et al., 2000] and SINA [Shen et al., 2001] also
provide a distributed database query interface towards a sensor network with
an emphasis on power management either by distributing queries or cluster-
ing low-level information in the network. Although TinyLime also provides a
simplified database model, the Linda tuple space, it has no notion of collecting
information at a single point. Instead multiple clients can be distributed, and
the system can dynamically reconfigure, something not inherent in the other
systems. Moreover, since TinyLime protocols are simpler and do not require
a tree structure, its communication delays tend to be smaller.
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Other data-oriented approaches, such as DSWare [Li et al., 2003], address
the redundancy of data collected by geographically proximate sensors. By
aggregating the data of several sensors and reporting it as a single value, some
amount of sensor failure can be tolerated. QUASAR [Lazaridis et al., 2004]
addresses quality concerns, allowing applications to express Quality aware
Queries (QaQ). For example, QaQs can express quality requirements as either
set-based (e.g., find at least 90% of the sensors with temperature greater than
50oC) or value-based (e.g., estimate the average temperature within 1oC).
Neither of these optimizations is incorporated into TinyLime, although we
plan to explore how aggregation and quality concerns can be addressed in the
system.

Tuple spaces have also been considered previously for use in sensor networks.
Claustrophobia [Bychkovskiy and Stathopoulos, 2002] replicates a single tu-
ple space among multiple motes, providing a variety of efficiency-reliability
tradeoffs for populating the tuple space with sensor data as well as retrieving
that data. However, it is based on a different operational setting than the one
we chose in this paper. ContextShadow [Jonsson, 2003] exploits multiple tuple
spaces, each holding only locally sensed information thus providing contextual
information. The application is required to explicitly connect with the tuple
space of interest to retrieve information. TinyLime, being focused on the com-
bination of MANET and sensor networks, exploits physical locality to restrict
interactions without application intervention.

9 Conclusions

In this paper we described a new middleware, TinyLime, supporting the de-
velopment of sensor network applications. TinyLime is an extension of the
Lime middleware, originally designed for MANETs. The adaptation of Lime
to the sensor network environment necessitated not only changes in the imple-
mentation to handle the restricted platform of the sensors, but also changes
in the model to introduce sensors as new components in the system. The re-
sult, TinyLime, is implemented as a layer on top of Lime with specialized
components deployed on sensors and base stations. It supports application-
tunable energy utilization by allowing the user to turn on and off logging of
values on the sensors. Logged values are available for efficient aggregation on a
single sensor while the basic TinyLime operations support aggregation across
multiple sensors.

An instantiation of the middleware has been implemented for the Cross-
bow mote platform, and is available for download at http://lime.sf.net/

tinyLime.html.
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